4.3. Системность и организованность жизни

Проявления жизни на Земле чрезвычайно многообразны. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами; многоклеточные, в свою очередь, представлены грибами, растениями и животными. Любое из этих царств объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы.

Во всем, казалось бы, бесконечном многообразии живого можно выделить несколько разных уровней организации живого: молекулярный, клеточный, тканевый, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Перечисленные уровни выделены по удобству изучения. Если же попытаться выделить основные уровни, отражающие не столько уровни изучения, сколько уровни организации жизни на Земле, то основными критериями такого выделения должны быть признаны наличие специфических элементарных, дискретных структур и элементарных явлений. При этом подходе оказывается необходимым и достаточным выделять молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценотический уровни (Н.В. Тимофеев-Ресовский и др.).

Молекулярно-генетический уровень. При изучении этого уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений. Известно, что основные структуры на этом уровне (коды наследственной информации, передаваемой от поколения к поколению) представляют собой ДНК, дифференцированную по длине на элементы кода – триплеты азотистых оснований, образующих гены.

Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать их локальные структурные изменения (мутации) и передачу хранящейся в них информации внутриклеточным управляющим системам.

Конвариантная редупликация происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы (рис. 4.2). Затем каждая из нитей строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой (см. рис. 4.1). Пиримидиновые и пуриновые основания комплементарных нитей скрепляются водородными связями между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК кишечной палочки (Escherichia coli), состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. Генетическая информация переносится из ядра молекулами иРНК в цитоплазму к рибосомам и там участвует в синтезе белка. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5–6 мин, а у бактерий быстрее.

Рис 4.2. Схема биосинтеза белка (по Л.С. Спирину, 1986): 1 –синтез иРНК (транскрипции). 2–3 – иРНК проходит через поры ядерной мембраны к рибосомам (трансляции), 4 – аминокислоты, соединяясь в определенной последовательности, из РНК образуют фермент, 5–6 – образование белка

Основные управляющие системы как при конвариантной редупликации, так и при внутриклеточной передаче информации используют «матричный принцип», т.е. являются матрицами, рядом с которыми строятся соответствующие специфические макромолекулы. В настоящее время успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур в клетках. Редупликация, основанная на матричном копировании, сохраняет не только генетическую норму, но и отклонения от нее, т.е. мутации (основа процесса эволюции). Достаточно точное знание молекулярно-генетического уровня – необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни.

Предыдущая | Оглавление | Следующая


Религия

Биология

Геология

Археология

История

Мифология

Психология

Астрономия

Разное