Контраргументы против теории и ее дефекты
Неприятности для СТЭ пришли с той стороны, с которой их меньше всего ожидали. У некоторых генетиков появились сомнения: а возникают ли в действительности новые виды тем путем, который так досконально описан генетикой популяций? Ведь ввиду продолжительности, а точнее сказать редкости, акта видообразования никто никогда не наблюдал его до конца. Те же моменты, которые были зарегистрированы, составляют не более чем выборку отдельных кадров из полнометражной картины. На этот пробел обратил внимание еще советский эколог С.С. Шварц, который метко заметил, что СТЭ, «уделяя максимальное внимание исследованию начальных этапов эволюции, оставляет в тени важнейший этап эволюции – видообразование, молчаливо признавая образование новых видов в качестве простого продолжения внутривидовой дифференциации» (Шварц, I960. С. 10).
Вследствие невозможности непосредственного наблюдения видообразования во времени специалисты изучают его в пространстве, выявляя картину географической изменчивости ныне живущих форм. Этим приемом, как мы видели, широко пользовался Дарвин. Понятно, что при такой процедуре они имеют дело не с процессом, а с результатом определенных этапов предполагаемой микроэволюции. Сопоставляя наблюдаемые стадии «дивергенции» популяций с данными палеонтологической летописи, они реконструируют временной ход событий, приводящих к современным видам.
Но этот методический прием по своему статусу аналогичен косвенным доказательствам и не обладает доказательной силой, ибо процессуальные параметры непосредственно непереводимы в пространственные. Неизвестной величиной ввиду ограниченности разрешающей способности палеонтологического метода остаются в этом случае градиенты популяционных изменений во времени, а также генетика и момент наступления репродуктивной изоляции. Поясним это популярным примером.
На побережьях Северной Европы живут бок о бок, не скрещиваясь, два самостоятельных вида чаек – серебристая (Larus argentatus) и клуша (Larus fuscus). Они входят в непрерывную цепь подвидов, обитающих в Северной Евразии, Северной Америке и Гренландии. Известны ископаемые остатки предполагаемой предковой формы этих чаек, обитавшей несколько сот тысяч лет назад в районе нынешнего Берингова пролива, откуда она распространялась на запад и на восток. Когда, расселяясь и попутно распадаясь на подвиды, западные и восточные чайки встретились в районе Северного и Балтийского морей, они уже накопили в ходе микроэволюции достаточно различий, чтобы оказаться репродуктивно изолированными. Этот пример считается в синтетической теории одним из наиболее доказательных.
Но проливает ли он свет на механизм произошедшего видообразования? Можно ли сказать с уверенностью, что чайки разделились на два вида именно в результате постепенного накопления малых мутаций или что разделение произошло лишь к моменту встречи, а не задолго до нее? Есть ли основание полностью отвергнуть возможность внезапного видообразования, например, на основе крупных хромосомных мутаций? Думается, что на эти вопросы придется ответить отрицательно. Что касается типа произошедшего генетического изменения, то он как раз и составляет предмет дискуссий. Чтобы решить вопрос применительно к чайкам, нужно было бы предпринять сравнительное обследование обоих видов на генетические различия, но подобного анализа еще никогда не проводилось ввиду его особой трудоемкости.
Таким образом, до сих пор остается неясным, возможно ли обособление двух форм, составляющих полиморфную популяцию, вне «принудительной» изоляции (географической или осуществляющейся в результате крупных мутаций) или они навсегда связаны друг с другом, как самцы и самки при половом диморфизме.
Обратимся теперь к суждениям о значении для видообразования генетики популяций, принадлежащим ее самым авторитетным представителям, но прежде заметим, что, хотя современная концепция видообразования называется биологической, по своей сути она остается генетической.
В противоположность краеугольному положению синтетической теории об адаптивном характере внутривидового полиморфизма и о его возникновении под действием естественного отбора один из зачинателей популяционной генетики С.С. Четвериков (1926) утверждал, что внутривидовая дифференцировка вовсе не обязательно связана с адаптивными изменениями. Существуют тысячи примеров, когда виды различаются не адаптивными, а безразличными в биологическом смысле признаками. Следовательно, приобретение адаптивного признака не является причиной расщепления близких форм, зато различия по адаптивным признакам выступают на передний план у высших систематических категорий. По мнению Четверикова, действие отбора ведет не к внутривидовой дифференциации, а к полной трансформации вида и его превращению в новый вид (мутация Ваагена).
Одним из первых неадекватность СТЭ осознал Майр. В книге «Зоологический вид и эволюция» (1963; рус. пер. – 1968), возражая Холдейну, он охарактеризовал рассмотрение популяции как мешка с разноцветными бобами «упрощенным теоретизированием», которое приводит к ложным представлениям. Позднее он высказался еще более категорично. «Сводить проблемы макроэволюции к изменениям частот генов бессмысленно, и в этом одна из причин, почему генетики (имеются в виду генетики-популяционисты. – В.Н.) внесли сравнительно небольшой вклад в решение проблем макроэволюции» (Mayr, 1982. Р. 610). И тут же Майр добавляет, что «неподходящая формула» генных частот ответственна за значительный срок, истекший с момента создания синтетической теории до адекватной трактовки этих проблем.
Через двадцать лет после своего возникновения селективная теория генетической структуры популяций и микроэволюции столкнулась с рядом трудностей и испытала значительные ограничения. Холдейн (Haldane, 1957) показал математически, что в популяции не может заменяться одновременно свыше 12 генов «более приспособленными» аллелями без того, чтобы ее репродуктивная численность не упала до нуля. Но у организмов тысячи аллелей! И, как показал анализ природных популяций, полиморфные популяции отличаются по очень большому их числу. Предположение, что «полезные» аллели находятся в сцепленном состоянии в одном или нескольких генных блоках, не разрушаемых кроссинговером и мейозом, естественно, не получило фактического подтверждения. При учете вывода Холдейна – а он остается в силе и поныне – для реализации таких различий между популяциями поэтапно потребовалось бы значительно больше времени, чем это в ряде случаев реально наблюдается в природе. Данное затруднение, вошедшее в историю иод названием дилеммы Холдейна и многократно возникавшее в связи с различными популяционно-генетическими соображениями, было частично преодолено лишь с созданием М. Кимурой (Kimura, 1968) «нейтралистской» гипотезы, но ценой отказа от идей исключительно селективной природы популяционных процессов.
В 50-е годы XX в. в основном исследованиями Добжанского была выявлена генетическая гетерогенность природных популяций и установлено, что в противоположность утверждению классический модели генетики популяций в них вместо гомозигот по наиболее приспособленным аллелям преобладают гетерозиготы, т.е. фиксируется несколько аллелей вместо одного. Для объяснения их одновременного поддержания в популяциях были выдвинуты балансовая и частотно-зависимая гипотезы действия естественного отбора.
Особенно серьезно поколебало математическую модель генетики популяций, поставив под вопрос само понятие «переживания наиболее приспособленных», обнаружение в природе достаточно высокого энзиматического полиморфизма и множественного (из нескольких десятков аллелей) аллелизма. Перед генетиками-популяционистами снова встала дилемма Холдейна. Они искали ответ на вопрос, каким образом отбор, имеющий дело с фенотипами и, следовательно, тесно взаимосвязанными генами, может одновременно поддерживать полиморфизм по огромному числу генов и еще впридачу их множественные аллели. В 1968 г. японский биохимик М. Кимура, подтвердив, что при превращении одного вида в другой селективно может быть вытеснено не более 12 аллелей, выступил с обоснованием идеи, что остальные тысячи аллелей вытесняются по воле случая, будучи селективно нейтральными. Разработанная им в дальнейшем теория нейтральности означала очень существенное ограничение применимости постулата об адаптивной природе полиморфизма. Оказалось, что адаптивный характер носит лишь незначительная часть эволюционных изменений первичной структуры ДНК, тогда как громадное большинство фенотипически «молчащих» замен нуклеотидов не имеет никакого селективного значения и фиксируется не отбором, а случайным дрейфом. Таковы главные «каверзы», которые приподнесла генетике популяций ее юная родственница – генетика молекулярная.
Они не могли не сказаться на притязаниях генетики популяций объяснить возникновение видов и их эволюцию. Вставшие перед ней на этом пути затруднения в той или иной мере вынуждены были признать такие крупные генетики, как Карсон, Стеббинс, Айала, Левонтин. Дальше других в критике популяционно-генетической теории видообразования пошел ученик Добжанского – Ричард Левонтин. Его оценки кажутся некоторым (Микитенко, 1986) чересчур строгими, но они совершенно объективно отражают существующее положение.
В книге Левонтина «Генетические основы эволюции» (1978) прежде всего обращают на себя внимание следующие общие соображения принципиального значения. Существующие математические модели популяционно-генетических процессов представляют собой слишком упрощенное описание микроэволюции. Они имеют дело с изменениями отдельных локусов, тогда как все локусы одной хромосомы тесно связаны между собой, а сами хромосомы интегрированы в целостном генотипе. Поскольку объектом отбора является фенотип, особь, то отдельные локусы отбираться изолированно не могут. Отсюда ясно, что с позиции осознания данного факта объектом анализа популяционной генетики должен стать генотип как целостная единица отбора. Но это, во-первых, ставит перед генетикой популяций такие задачи, с которыми не способен справиться даже самый совершенный компьютер, а во-вторых, означает, что сами популяционно-генетические исследования в отрыве от данных, получаемых экологами, морфологами, физиологами, эмбриологами и представителями смежных специальностей, не могут раскрыть механизм микроэволюции и видообразования.
В связи с тем что генотипические и фенотипические различия популяций трудно или даже невозможно измерить с необходимой степенью точности, мы, по мнению Левонтина, тем более лишены возможности характеризовать генотипические различия на разных этапах фенотипической дифференциации – от первых этапов дивергенции двух популяций до образования рас, полувидов и видов. Пока остается неизвестным, какая часть генома затрагивается в начале процесса дифференциации и какая – при репродуктивной изоляции, не говоря уже о характере самих генотипических изменений. Следовательно, у нас нет подхода к оценке содержания и количественных границ и такого важного эволюционного события, как, например, «генетическая революция» Майра. До тех пор пока мы не научимся точно определять генотипические различия, мы не сможем приступить к созданию количественной генетической теории видообразования. Но и когда этого удастся достичь, это будет только началом, так как в конечном итоге нам необходимо выяснить, каким образом те или иные генетические различия связаны с определенными репродуктивными и экологическими признаками, разделяющими два вида.
К этим соображениям Левонтина уместно добавить, что между морфологическими отличиями и репродуктивной изоляцией как генетическим явлением нет прямой взаимосвязи. Условия, ведущие к морфологической адаптации и благоприятствующие видообразованию, как и время их осуществления, по справедливому замечанию Стеббинса и Айалы (1985), могут не совпадать. Это означает, что по изменению морфологии ископаемых форм нельзя судить о моменте наступления видообразовательного акта.
Мы подошли к вопросу о возможности или невозможности сопряжения изменений популяций с организационными изменениями особей – ключевому для теории эволюции. Он рассматривается чисто феноменологически – с позиций современной генетики популяций.